GStreamer 基础教程三: 动态管道
Posted on Sat 20 January 2024 in Journal
Abstract | GStreamer 基础教程三: 动态管道 |
---|---|
Authors | Walter Fan |
Category | learning note |
Status | v1.0 |
Updated | 2024-01-20 |
License | CC-BY-NC-ND 4.0 |
-- 老范编译自 GStreamer 官方教程
目标
我们可以在应用程序开始时定义整体管道,也可以在有足够信息时“动态”构建管道。
这篇教程的目标是搞清楚如下问题:
- 如何在链接元件时获得更精细的控制?
- 如何收到感兴趣事件的通知,并及时反应?
- 元件可能处于的哪些不同的状态?
介绍
这篇教程中的管道在设置为 “Playing” 状态之前并未完全构建好。 这没问题。如果我们不采取进一步的行动,数据将到达管道的尽头,管道将会产生一个错误消息并停止。但这里我们将会采取点行动。
在这个例子中,我们将打开一个包含多路媒体的文件(多路复用muxed), 也就是将音频和视频存储在一个容器文件中。
负责打开这样的容器的元件称为分离器(demuxer), 常见的容器格式有 Matroska(MKV), Quick Time(QT, MOV), Ogg 或 Advanced Systems Format(ASF, WMV, WMA).
如果一个容器嵌入了多路媒体流 (例如一路视频和两路音频),分离器 demuxer 会分开它们,并通过不同的输出端口发布出去。这样就可以在管道中创建不同的分支,处理不同类型的数据。
GStreamer 元件相互通信所通过的端口称为 Pad(GstPad),有 Sink Pad(数据通过其进入元件) 和 Src Pad(数据由其离开元件)。自然地,Src Element 仅包含 Src Pad, Sink Element 仅包含 Sink Pad, 而 Filter element 既包含 src pad 也包含 sink pad.
一个分离器 demuxer 包含一个 sink pad (聚合的数据通过它到达), 和多个 source pads (对应于在容器中找到的媒体流)
为了完整起见,这里有一个简化的管道,其中包含一个分离器和两个分支,一个用于音频,一个用于视频。 这不是本示例中将构建的管道:
处理分离器时的主要复杂性在于,它们无法产生任何信息,直到它们收到一些数据并且有机会查看容器以了解里面的内容。
也就是说,分离器开始时没有其他元件可以链接的 source pad,因此管道必须在分离器处终止。
解决方案是构建从源元件到分离器的管道,并将其设置为运行 (playing 状态)。 当分离器收到足够的信息以了解容器中流的数量和类型时,它将开始创建 source pad。 现在是我们完成管道构建并将其连接到新添加的 demux source pad 的最佳时机。
为简单起见,在本例中,我们将仅链接到音频 pad 并忽略视频流。
示例
大致流程如下
@startuml
start
: 初始化 gst_init();
: 创建元件 gst_element_factory_make();
: 创建管道 gst_pipeline_new();
: 添加元件到管道 gst_bin_add_many();
: 将元件连接起来 gst_element_link
(除了 source element);
: 设置元件属性 g_object_set();
: 设置 source 元件的信号 “pad-added” 的回调;
: 设置管道状态 gst_element_set_state();
: 等待信号发生 gst_signal_emit(由 demuxer 触发)
等待总线消息 gst_bus_timed_pop_filtered();
fork
:pad-added signal triggered;
:pad_added_handler;
fork again
:gst_bus_timed_pop_filtered
-> GST_MESSAGE_ERROR;
fork again
:gst_bus_timed_pop_filtered
-> GST_MESSAGE_EOS;
fork again
:gst_bus_timed_pop_filtered
-> GST_MESSAGE_ERROR;
fork again
:gst_bus_timed_pop_filtered
-> GST_MESSAGE_STATE_CHANGED;
end merge
stop
@enduml
源代码
#include <gst/gst.h>
/* Structure to contain all our information, so we can pass it to callbacks */
typedef struct _CustomData {
GstElement *pipeline;
GstElement *source;
GstElement *convert;
GstElement *resample;
GstElement *sink;
} CustomData;
/* Handler for the pad-added signal */
static void pad_added_handler (GstElement *src, GstPad *pad, CustomData *data);
int main(int argc, char *argv[]) {
CustomData data;
GstBus *bus;
GstMessage *msg;
GstStateChangeReturn ret;
gboolean terminate = FALSE;
/* Initialize GStreamer */
gst_init (&argc, &argv);
/* Create the elements */
data.source = gst_element_factory_make ("uridecodebin", "source");
data.convert = gst_element_factory_make ("audioconvert", "convert");
data.resample = gst_element_factory_make ("audioresample", "resample");
data.sink = gst_element_factory_make ("autoaudiosink", "sink");
/* Create the empty pipeline */
data.pipeline = gst_pipeline_new ("test-pipeline");
if (!data.pipeline || !data.source || !data.convert || !data.resample || !data.sink) {
g_printerr ("Not all elements could be created.\n");
return -1;
}
/* Build the pipeline. Note that we are NOT linking the source at this
* point. We will do it later. */
gst_bin_add_many (GST_BIN (data.pipeline), data.source, data.convert, data.resample, data.sink, NULL);
if (!gst_element_link_many (data.convert, data.resample, data.sink, NULL)) {
g_printerr ("Elements could not be linked.\n");
gst_object_unref (data.pipeline);
return -1;
}
/* Set the URI to play */
g_object_set (data.source, "uri", "https://gstreamer.freedesktop.org/data/media/sintel_trailer-480p.webm", NULL);
/* Connect to the pad-added signal */
g_signal_connect (data.source, "pad-added", G_CALLBACK (pad_added_handler), &data);
/* Start playing */
ret = gst_element_set_state (data.pipeline, GST_STATE_PLAYING);
if (ret == GST_STATE_CHANGE_FAILURE) {
g_printerr ("Unable to set the pipeline to the playing state.\n");
gst_object_unref (data.pipeline);
return -1;
}
/* Listen to the bus */
bus = gst_element_get_bus (data.pipeline);
do {
msg = gst_bus_timed_pop_filtered (bus, GST_CLOCK_TIME_NONE,
GST_MESSAGE_STATE_CHANGED | GST_MESSAGE_ERROR | GST_MESSAGE_EOS);
/* Parse message */
if (msg != NULL) {
GError *err;
gchar *debug_info;
switch (GST_MESSAGE_TYPE (msg)) {
case GST_MESSAGE_ERROR:
gst_message_parse_error (msg, &err, &debug_info);
g_printerr ("Error received from element %s: %s\n", GST_OBJECT_NAME (msg->src), err->message);
g_printerr ("Debugging information: %s\n", debug_info ? debug_info : "none");
g_clear_error (&err);
g_free (debug_info);
terminate = TRUE;
break;
case GST_MESSAGE_EOS:
g_print ("End-Of-Stream reached.\n");
terminate = TRUE;
break;
case GST_MESSAGE_STATE_CHANGED:
/* We are only interested in state-changed messages from the pipeline */
if (GST_MESSAGE_SRC (msg) == GST_OBJECT (data.pipeline)) {
GstState old_state, new_state, pending_state;
gst_message_parse_state_changed (msg, &old_state, &new_state, &pending_state);
g_print ("Pipeline state changed from %s to %s:\n",
gst_element_state_get_name (old_state), gst_element_state_get_name (new_state));
}
break;
default:
/* We should not reach here */
g_printerr ("Unexpected message received.\n");
break;
}
gst_message_unref (msg);
}
} while (!terminate);
/* Free resources */
gst_object_unref (bus);
gst_element_set_state (data.pipeline, GST_STATE_NULL);
gst_object_unref (data.pipeline);
return 0;
}
/* This function will be called by the pad-added signal */
static void pad_added_handler (GstElement *src, GstPad *new_pad, CustomData *data) {
GstPad *sink_pad = gst_element_get_static_pad (data->convert, "sink");
GstPadLinkReturn ret;
GstCaps *new_pad_caps = NULL;
GstStructure *new_pad_struct = NULL;
const gchar *new_pad_type = NULL;
g_print ("Received new pad '%s' from '%s':\n", GST_PAD_NAME (new_pad), GST_ELEMENT_NAME (src));
/* If our converter is already linked, we have nothing to do here */
if (gst_pad_is_linked (sink_pad)) {
g_print ("We are already linked. Ignoring.\n");
goto exit;
}
/* Check the new pad's type */
new_pad_caps = gst_pad_get_current_caps (new_pad);
new_pad_struct = gst_caps_get_structure (new_pad_caps, 0);
new_pad_type = gst_structure_get_name (new_pad_struct);
if (!g_str_has_prefix (new_pad_type, "audio/x-raw")) {
g_print ("It has type '%s' which is not raw audio. Ignoring.\n", new_pad_type);
goto exit;
}
/* Attempt the link */
ret = gst_pad_link (new_pad, sink_pad);
if (GST_PAD_LINK_FAILED (ret)) {
g_print ("Type is '%s' but link failed.\n", new_pad_type);
} else {
g_print ("Link succeeded (type '%s').\n", new_pad_type);
}
exit:
/* Unreference the new pad's caps, if we got them */
if (new_pad_caps != NULL)
gst_caps_unref (new_pad_caps);
/* Unreference the sink pad */
gst_object_unref (sink_pad);
}
上述代码可通过如下命令行编译
gcc basic-tutorial-3.c -o basic-tutorial-3 `pkg-config --cflags --libs gstreamer-1.0`
关键代码解析
其中有意思的就是 pad-added 的回调函数 pad_added_handler,它会将新创建出来的 newpad(urldecodebin 新建出来的) 与 sink_pad( audioconvert 的) 连接起来。
/* Connect to the pad-added signal */
g_signal_connect (data.source, "pad-added", G_CALLBACK (pad_added_handler),
&data);
/* This function will be called by the pad-added signal */
static void
pad_added_handler (GstElement * src, GstPad * new_pad, CustomData * data)
{
/* Attempt the link */
ret = gst_pad_link (new_pad, sink_pad);
if (GST_PAD_LINK_FAILED (ret)) {
g_print ("Type is '%s' but link failed.\n", new_pad_type);
} else {
g_print ("Link succeeded (type '%s').\n", new_pad_type);
}
}
原来的 pipeline 是
audioconvert -> audioresample -> autoaudiosink
当 uridecodebin 的 src_pad 按需创建出来后,将 uridecodebin 的 src_pad 与 audioconvert 的 sink_pad 连接起来,变成
urldecodebin -> audioconvert -> audioresample -> autoaudiosink
结论
这样我们了解到了如下知识
- 如何使用 GSignals 收到事件通知
-
使用 g_signal_connect
-
如何直接连接 GstPad 而不是其父元素
-
使用 gst_pad_link
-
GStreamer 元素的各种状态:
-
使用 gst_element_set_state 设置状态,可以通过观察 GST_MESSAGE_STATE_CHANGED 类型的消息来观察管道的状态变化
- GST_STATE_NULL:已停用,元件不占用资源
- GST_STATE_READY:检查并分配资源
- GST_STATE_PAUSED:预滚动,即为每个接收器 sink 获取一个缓冲区
- GST_STATE_PLAYING:活动数据流,运行时间在不断增加
还有如何组合了这些项目来构建动态管道,该管道不是在程序启动时定义的,而是在有关媒体的信息可用时创建的。
本作品采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可。